
Request Distribution Strategies in Cluster Based
Network Servers

1V.Hema 2Dr. K.Kungumaraj
1Research Scholar, Mother Teresa Women’s University, Kodaikanal.

2Assistant Professor, Department of Computer Science,
Arulmigu Palaniandavar Arts College For Women, Palani.

Abstract: As distributed applications and services are getting
popular now a days, Web servers play a central role in the
telecommunications infrastructure. Cluster-based Web
servers are increasingly adopted to host a variety of network-
based services. So performance improvement of these servers
is necessary. The cluster based architecture consists of front-
end dispatcher and several back-end servers. Front end is
responsible for request distribution. The back-end nodes are
responsible for request processing. They should provide
reliability, availability and efficient services. So performance
improvement of these servers is necessary. Load balancing is
one of the best efficient methods for performance
improvement of cluster system. It is often desirable to isolate
the performance of different classes of requests from each
other. Our objective is to deliver better services to high
priority request classes without over-sacrificing low priority
classes. The main objective is to minimize the response time of
requests that need intra cluster communication.

Keywords : Load balancing, Web Servers, Clusters, Load
Dispatcher

1. INTRODUCTION

Communication networks today have become essential for
big business. The network traffic increasing rapidly
requires an increase in backbone networks capacity and
needs to be upgraded frequently. The web server hosts the
pages, scripts, programs and multimedia files and serves
them using protocols. To increase web server scalability
more servers needs to be added to distribute the load among
these server cluster. A cluster consists of a number of nodes
connected by a high speed LAN. There are three main
components in the cluster (1) Dispatcher (2) Distributer and
(3) Server. The communication between components on
different cluster nodes takes place using persistent TCP
control connections. These connections also serve to detect
node failures. The load distribution among this cluster
server is known as load balancing. As a single web server
cannot handle the traffic, a load balancer is required to
balance the traffic load across multiple servers.
Request distribution and load balance are essential
techniques for web server clusters. Cluster based server has
been proven to be an efficient and cost effective alternative
to build a scalable, reliable and high-performance Internet
server system. For cluster computing the network
dispatching technology for client’s requests is an important
issue. The best way to address both the scalability and
reliability problems in web clusters is to deploy a totally
decentralized architecture.

Figure-1: Load balancing among multiple web servers

A cluster-based server consists of a front-end dispatcher
and multiple back-end servers. The dispatcher receives
incoming jobs, and then decides how to assign them to
back-end servers. The back end servers serve the jobs
according to some policies. The strategies for load
balancing on back end servers depend on the amount of
work and the number of jobs assigned. The switch acts as
the initial interface between the cluster nodes and the
Internet, and distributes the incoming requests to the
servers, trying to balance the load among them. The
following figure shows the cluster theory.

Figure-2: Cluster Theory
The clients issue their requests, the load balancer forwards
these request to the clustered server which in turn replies
with yes or no response. The load balancer processes this
response and send back to clients. As the number of client
requests increases effective strategies must be followed to
balance the load among the servers. In this paper we
present the various strategies for request distribution in
cluster based network servers.

V.Hema et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2059-2062

www.ijcsit.com 2059

2. REQUEST DISTRIBUTION STRATEGIES
The following strategies provide various methods for
effective load balancing among servers.
2.1 Content Aware Request Distribution
Cluster-based servers employ a specialized front-end node
that acts as a single point of contact for clients and
distributes requests to back-end nodes in the cluster. The
front-end distributes requests such that the load among the
back-end nodes remains balanced. With content aware
request distribution, the front-end additionally takes into
account the content of service requested when deciding
which back-end node should handle a given request.
Content aware request distribution can improve scalability,
flexibility and can give significant performance
improvements. It also affords simplicity and limit the
scalability of the cluster.
Figure-3 depicts a simple client-transparent mechanism. An
HTTP proxy running on the front-end accepts client
connections with all back-end nodes. When a request
arrives on a client connection, it is assigned to according to
request distribution strategy and the request is forwarded to
appropriate back-end connection. When the response
arrives from backend node, the front end proxy forwards
the data on the client connection. This approach is simple
and no modification is required on cluster node. Because of
over head incurred for forwarding all response data from
back-end server to the clients. TCP splicing has low
overhead but requires modifications to the OS Kernel of the
front end node. TCP hand off mechanism was introduced
to enable the forwarding of back-end responses directly to
the clients without passing through the front-end
intermediary. The TCP handoff is totally transparent from
the client's point of view. Since it operates on transport-
level streams, clients can never be aware of being
redirected. TCP handoff provides higher scalability than
TCP splicing as it eliminates the forwarding overhead of
response data.

Figure-3: Mechanisms for request distribution

There are three main parts in content aware request
distribution scheduling system. i. Design of dispatcher
module ii. LARD scheduling policy iii. CASS. The
following figure 4 illustrates the design of the network
dispatcher. The pseudo-server module provides the
function of listening on multiple known ports at the same
time. The packet parser module achieves generality by
providing a common interface for developers to add other
packet parser for different network services.

Figure-4: Design of the Network Dispatcher

In LARD scheduling policy, the allocation must be decided
a prior, and the data must be allocated to different node
servers. It can only support static web services. CASS
supports many TCP-based network services. It can increase
the node server’s main memory cache hit rate and enhance
the cluster’s performance. The process delay of CASS is
compared with common network delay.

2.2 Time-Window Based Request Distribution Strategy
In order to overcome the weakness of existing request
distribution strategies for server cluster in average response
time and computation cost, a request distribution strategy
based on static time interval is used. Its basic idea is that it
divides the update interval into several subintervals and
introduces randomness into the selection of server node for
the requests arrived in a subinterval. It can help to improve
cache utility while keeping workload balance among the
servers in the cluster. The throughput requirement of
storage subsystem is relieved, and the system utility is
improved. Round trip time can give better and relatively
accurate delay experienced in path and to some extent; a
lower RTT indicates higher available bandwidth. However,
it is very dynamic in nature; it changes quickly over
relatively short period of time. It has much more variation
for different clusters compared to hop count; it gives better
path information between client and cluster. On the
downside, it is relatively costlier to measure and requires
more frequent refreshes.

3. CO-SCHEDULING ARCHITECTURE

Co-scheduling is the principle for concurrent systems of
scheduling related processes run on different processors at
the same time (in parallel). There are three types of co-
scheduling: explicit co-scheduling, local
scheduling and implicit or dynamic co-scheduling. Explicit
co-scheduling requires all processing to actually take place
at the same time, and is typically implemented by global
scheduling across all processors. A specific algorithm is
known as gang scheduling. Local co-scheduling allows
individual processors to schedule the processing
independently. Dynamic (or implicit) co-scheduling is a
form of co-scheduling where individual processors can still
schedule processing independently, but they make
scheduling decisions in cooperation with other processors.
Figure-5 shows a co-scheduler model.

V.Hema et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2059-2062

www.ijcsit.com 2060

Figure-5: Co-scheduler Model

Unlike tightly coupled multiprocessors, scheduling
processes of a parallel job onto various nodes of a cluster is
more challenging due to the individual node autonomy. All
co-scheduling algorithms rely primarily on one of two local
events. (i) Arrival of a message (ii) Wait for a message
to determine when and which process to schedule. Co-
scheduling algorithms reduce the execution time of parallel
applications. Each node in the cluster is aware of the cache
and load information of other nodes. A remote request is
forwarded; the main process puts a request in a queue. Both
sender and receiver are scheduled simultaneously for
efficient communication.

4. LARD STRATEGIES
The goal of LARD is to combine good balancing and high
locality. Locality aware request distribution improve
locality in the back-end’s cache, a simple front-end strategy
assigns request for all targets to a particular back-end. The
cache in each back-end should achieve a much higher hit
rate. LARD maintains mappings between targets and back-
end nodes. To achieve a balance between load distribution
and locality, LARD uses cost-balancing, cost-locality and
cost-replacement.
The locality based distribution policy at the distributor and
strives to increase the memory hits at the backend server’s
rather than the disk latency. The distributor maintains a
table of the data types available at the backend servers’
memory. The data types are assigned to the backend servers
based on the initial server/data partitioning and are initially
distributed evenly across the servers. When a new request
arrives at the distributor, its data type is looked up in the
distributor table and the corresponding server is identified.
The request is forwarded always to that server for that
particular data type.

BB B

B

A
C
B
C
A
A
C

A

C C

A A

C

A

C

Back end
nodes

Front end
 node

Figure-6: LARD

Figure-7 presents pseudo-code for the basic LARD. The
front-end maintains a one-to-one mapping of targets to
back-end nodes in the server array. When the first request
arrives for a given target, it is assigned a back-end node by
choosing a lightly loaded back-end. When a node is
overloaded, the target is assigned a new back-end node
from the current set of lightly loaded nodes. A node’s load
is measured as the number of active connections.

while (true)
fetch next request r;
if server[r.target]=null then
s, server[r.target]  {least loaded node};
else
s  server[r.target]
if (s.load > Thigh && Exist node with load < Tlow) || s.load
>= 2*Thigh then
s, server[r.target]  {least loaded node};
send r to s;

Figure-7 : The Basic LARD Strategy

Tlow: the load below which a back-end is likely to have idle
resources.
Thigh: the load above which a node is likely to cause
substantial delay in serving requests.

5. PERFORMANCE ANALYSIS
The intuition for the basic LARD strategy is as follows.
The distribution of targets when they are first requested
leads to a partitioning of the namespace of the database,
purely aiming at locality. It also derives similar locality
gains. We re-assign targets when there is a load imbalance.
The front-end limits the total connections handed to all
back-end nodes to the value S = (n-1)*Thigh+Tlow-1, where n
is the number of back-end nodes. Setting S to this value
ensures that at most n-2 nodes can have a load >= Thigh
while no node has load < Tlow.
The load difference between old and new targets is at least
Thigh-Tlow. The max load imbalance that can arise is 2Thigh-
Tlow . The setting for Tlow depends on the speed of the back-
end nodes. Choosing Thigh involves a tradeoff. Thigh-Tlow
should be low enough to limit the delay variance among the
back-ends to acceptable levels, but high enough to tolerate
limited load imbalance without destroying locality. A
single target causes a back-end to go into an overload
situation. We should assign several back-end nodes to serve
that document, and to distribute requests for that target
among the serving nodes.

V.Hema et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2059-2062

www.ijcsit.com 2061

6. CONCLUSION
LARD strategy can achieve high cache hit rates and good
load balancing in a cluster server. It also provides higher
through put, better CPU utilization and reduced disk access.
It is scalable at low cost. But LARD strives to improve
cluster performance by simultaneously achieving load
balancing and high cache hit rates at the back-ends. With
LARD, the effective cache size approaches the sum of the
individual node cache sizes. Thus, adding nodes to a cluster
can accommodate both increased traffic due to additional
CPU power and larger working sets due to the increased
effective cache size.

REFERENCES
[1]. Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter

Druschel, Willy Zwaenepoel, Erich Nahum, “Locality-aware request
distribution in clusterbasednetwork servers,” Proceedings of the
eighth international conference on Architectural support for
programming languages and operating systems, p.205-216, October
02-07, 1998, San Jose, California, United States

[2] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. "User-Level
Communication in Cluster-Based Servers". Proceedings of the 8th
IEEE International Symposium on High-Performance Computer
Architecture (HPCA 8), February 2002.

[3] M. Aron, D. Sanders, P. Druschel, etc, Scalable,Content-Aware
Request Distibution in Cluster-Based Network Servers.,
Proceedings of 2000 USENIX Annual Technical Conference, 2000.

[4] T. 13risco. DNS Support for Load Balancing. RFC 1794, Apr. 1995.
[5] E. Pinheiro, R. Bianchini, E. V. Carrera and T. Heath, “Dynamic

Cluster Reconfiguration for Power and Performance.” Kluwer
Academic Publishers,2002.

[6] K. Rajamani and C. Lefurgy, “On evaluating request-distribution
schemes for saving energy in server clusters,” in Proc. Intl. Sym.
Performance Analysis of Systems and Software, March 2003.

[7] Teo Y.M. and R. Ayani. \Comparison of Load Balancing Strategies
on Cluster-based Web Servers", Simulation, 77(5-6), 185-195,
November-December 2001.

[8] Riska, A., W. Sun, E. Smirni and G. Ciardo. \AdaptLoad: E_ective
Balancing in Clustered Web Servers Under Transient Load
Conditions," 22nd International Conferenceon Distributed
Computing Systems (ICDCS'02), 2002.

[9] Krishnamurthy, B. and J. Rexford. Web Protocols and Practice :
HTTP 1.1, Networking Protocols, Caching, and Tra_c Measurement,
Addison-Wesley, 2001.

[10] Ciardo, G., A. Riska and E. Smirni. \EquiLoad: A Load Balancing
Policy for Clustered Web Servers". Performance Evaluation, 46(2-
3):101-124, 2001.

V.Hema et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 2059-2062

www.ijcsit.com 2062

